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ABSTRACT

In this paper, present computational methods for solving numerical multipleintegralswith constantsand variables
limits of integrations which are based on Haar wavelet, Block-pulse function, Chebyshev wavelet and Snc-function
methods. This approach is the generalization and improvement of these methods and compared with Gauss Legendre
guadrature methods. The main advantages of the generalized method are its more efficient and simple applicability than the
previous methods. An absolute and relative errors are estimated of multiple integrations are considered up to three
dimensions. Finally, we also give some numerical examples to compare with existing methods and the benefits of proposed

methods have to find their computation efficiency.
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1. INTRODUCTION

Integrals and derivatives are fundamental to calculus. The integras involve in mathematics, physics, and
engineering applications. To find the solution of integrals is preferred clear procedures. The analytical solutions are not
helpful for the real-time applications. Some integrals cannot be found with exact solutions analytically, if some special
functions involving the integrals which is a challenge to compute, and difficult to finding the accurate solution is too
time-consuming. Thisisthe main reason to go for numerical methods for approximating integrals, nowadays to compute the
integrations using digital €lectronic computers. So numerical integration isthe best ways to find most approximate solutions
of the integrations. In last decades, wavelets are developing tool in this area. There are different types of wavelets and
approximating functions have been used in numerical approximations, some examples are the Haar wavelet [Ma eknejad and
Mirzaee (2005)][Aziz and Haq (2010)], Block-pulse function [Rabbani and Nouri (2010)], Chebyshev function [Yuanlu
(2010)] [Rostami et al. (2012)] and Sinc function [Stenger (2012)]. The solution of numerical integral has been done up to
tripleintegral using Haar wavelet [Ahmedov and bin Abd Sathar (2013)] [Aziz and Haqg (2010)]. The single integral has been
done using Block-pulse function, Chebyshev function and Sinc function [Rostami et al. (2012)].
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36 M. Kamalakannan

In this paper, we generalized asN dimensionintegral (N = 1,2,3, ....) using the proposed methods, some examples
of numerical multiple integrations (consider only single, double and triple integrals) with variable and constant limits are
provided to show the precision of proposed methods and comparison between them. Those methods are compared with
Gauss Legendre quadrature method. Absolute and relative errors are estimated of numerical multiple integrations.

The advantage of proposed the methods has to find their computation efficiency.

In associate with this paper asfollows. In section 2 as Numerical technique for single integral s of proposed methods,
and the subsections 2.1 to 2.4 as method of numerical integrations based on Haar wavelet [Ahmedov and bin Abd Sathar
(2013)] [Aziz and Hag (2010)], Block-pulse function [Rostami et al. (2012)], Chebyshev wavelet, Sinc function
[Rostami et al. (2012)] respectively. In section 3, the method for generalized N dimension integrals. In section 4, has given
numerical examples with results and section 5, is given results and discussion. Concluding remarks are given in the last

section 6.

2. NUMERICAL INTEGRATION FOR SINGLE INTEGRALS
2.1. Haar Wavelet

The Haar wavelet is a sequence of rescaled square-shaped functions which together form awavel et family or basis,

and its scaling function ¢, (x) can be described as on the interval [a,b)

1,for x € [a,b)
0, otherwise @

$1(x) = {
The Haar wavelets mother wavelet function ¢, (x) can be described as on the interval [a, b) is given by

a+b
1 forxe [a, T)
920 =11 forx €[22, 1) (2
0 otherwise

In general, Haar wavelet family defined for x € [a, b) except the scaling function can be described as
1 forx€la/p)
¢i(x) =1—1 forx € [B,y) 3
0 otherwise
foral i =345,.....2M where @ = a + ~“k,f = a+~"(k+05), y =a+==(k+1) and M = 2/, Jbe
the maximum level of Haar resolutionsand k = 1,2,..... 2M

2.1.1. Method of Numerical Integrations Based on Ha Wavelet

Any function f(x) which is squareintegrable function on the interval [a,b) can be expressed as an infinite sum of

Haar wavelets

f0) = Xiz1 a;¢:(x) 4

In practice, only the first 2M terms of the sum is considered as,

f) = L1 aii(x) ©)

Lemma 2.1The approximate value of the integral is
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[} f)dx = ay(b - a) (6)
Proof.
[} bi(x)dx =0

foral i =2,3,....

and

[} $1(x)dx=b—a

[} f@odx = 524 a; [ ¢ (x)dx
=a;(b—a)

In connection with the above equation Haar approximate only one co-efficient in the evaluation of definite integral

to calculate the Haar co-efficient a,, we consider as anodal points as,
xk=a+b2;M“(k+o.5) @)
the discretized form of egn. (5) can be written as
fa) = L aii () ©)
Lemma 2.2The solution of the systemfor a,, is
a; = =T f(x) ©)
Proof. We can prove by an induction method on J, where M = 2/, for J =0,M =1
f(x))=a,+a,
f(x) =a, —a
therefore
ay =3 [f () + f(x2)]

thisistrue for /] = 0, we assume that the lemmais true for upto ] = n — 1, let us consider J = n the new system
has contain 2™ equation involving 2" variable, and replacing 2a, by a;, and f(xyx_1) + f(x2) by g(xx), thus we

have

@ = o 2E A () (10)
substituting a;, and g(x,;) values

1 n

A = ﬁZii f ()
1

A = 52?21 f ()

thelemmaistruefor J = n, in particular
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a = 5T f(x) (11)
substituting equations (11) and (7) in egn.(6), the formulafor Haar wavelet is
[} fOodx = 22324, f(a+2 (k +0.5)) (12)

2.2. Block-Pulse Function

Definition 2.1 An m-set of BPF is defined as follows

(i-DT T,
b, (x) = {1, fort € | . (13)

0, otherwise

with t €[0,T), i =1,23,.....,m ad h = —
2.2.1. Method of Numerical Integrations Based on BP
We consider the integral fff(x)dx by using x = (b — a)t + a, we have
[ fodx = (b—a) [, f((b—a)t + a)dt (14)
Theorem 2.3The approximate value of the integral is
Jy fdt ~—3m, f; (15)
Proof. the orthogonal property of BPF is the basis of expanding functionsinto their BPF series as
f@®) = X2 fidi(© (16)
Iy F@®de =52 fi [y ¢i(®)de
~ 3
Let us consider the nodal points as
tk=%,k=1,2, ........... ,m
fti) = 2% fidi(ti) = fie
The approximate value
[y f@®dt ~~xm, FE
In genera
[ fode ~E25m, fa+22(i-05)) (17)
if m=2M,M = 2/, the BPF becomes Haar wavelet (see Tables)
2.3. Chebyshev Wavelet

Definition 2.2 The Chebyshev wavelets, ¢, ,(x),n =1,2,..... ,2Y and m = 0,1,....,M — 1 is defined on the
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interval [0,1) as,
(n-1)

B () = {ZZTm(Z x—2n+1),forx € [ Py ’zk—l) (18)
0, otherwise

where

3 \/—_,form—O

T.(t) =
© \/;Tm(t),form >0

and k isany any positive integer and misthe degree of Chebyshev polynomials of the first kind. Here, T, (t) isthe

Chebyshev polynomials of the first kind of degree m which is orthogonal with respect to the weight function W (t) = J#

on theinterval [-1,1] and satisfy the following recursive formula

{Tm+1(t) = 24T, () = Ty (), m = 1,2.3,.......
To = 1andT1(t) =t.

2.3.1. Method of Numerical Integrations Based on G¥byshev Wavelet

An integral over [a, b] must be changed into an integral over [0, 1]. This change of interval can be done in the

following way
f;f(x)dx =(b-—-a) fol f((b—a)t+a)dt (19)

Theorem 2.4The approximate value of theintegral is

Iy feodx = Cro + Tty 2 Cod] (20)
Proof. Any function f(x), which is square integrablein theinterval x € [0,1), can be expressed as

f(x) = Xa=1 Zm=0 ComPnm(¥)x € [a,b)

SO we can approximate f(x) as

() = 225 TZh Comnm ()X € [a,b)

Jy FOOdx = B25T T8 Cum [y Pnm () d (22)

let us consider

n

Jy nm(x)dx = 2 25y Tn(2x — 2n + 1)dx

Pk—1
ka4
272 [ Tp(Hdt
since
0,mis odd

1
f_l T (t)dt = {mz_z_l’m is even
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we have
k
2172
) = 1 m=20
Jo Drm()dx = 30_k mis odd
272 ,
Lm mis even

substituting the above equationsin egn. (21), then we get egn. (20).

Now to calculate the coefficient C,, oy and C, ;) Of Chebyshev wavelets, and consider the nodal points as

2q-1 —
Xq=Wq=1,2, ..... ,2k 1IVI

and

2k—1

f(xq) = Zn=1 11‘141;%) Cn,md)n,m(xq)
From the definition of Chebyshev wavelet

(n-1) 2q-1 n
2k=1 — okpy < 2k—-1

SO

g=Mm—-DM+ii=123,......M

2(n-1)M+2i—1

Flxg) = fEU—Dr2ict,
and

:
¢n,0(xq) = \2/_5

we
¢n,m(xq) = 2me(ZLM__l -1

The above system of equations changed to the below system of equationsis given as

=

1+k
2(n-1)M+2i-1 272 2i-1

fEEZEE) = 2o + 20T - T = DCm (22)
2km VT N M
foral i =1,2,3,..... M
The coefficient C(, o) and C,, ;) can be easily calculated from the above system of equation.
2.4. Sinc Function

Definition 2.3 The Sinc function is defined on the whole real line by

sin(mx) forx #0
sinc(x) = { 22
1,forx =0

For any h > 0, the translated Sinc function with evenly spaced nodes are
SU,h)(x) = sinc (%) J=0,+1,42,.......
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Thisiscalled J** Sinc functions. If f is defined on thereal line, then h > 0. The series

f() = Xje— FUMSU, ) (23)
whenever the seriesf is converging. The expansion of f is called Whittaker cardinal expansion.
2.4.1. Method of Numerical Integrations Based on 8¢ Function

In this case we take the limits (a,b), where —o0o < a < b <
$(x) = InG) (24)

P'(x) = % (25)

the basis function on (a,b) is given by
U, ) (x) = sinc (2

we consider the nodal point as x; € (a, b)

X = $1(h) = Lo (26)

14+e/h
Theorem 2.5Let L, (D) bethe set of all analytic function, D be a ssimply connected domain in the complex plane,
1
%,e Lo(D) with 0<a <1 and 0<d <m, let N be the positive integer, and h = (%)E and there exist a positive

constant C, which isindependent of N, such that

1
2

b _ N fxp) (~mdaN)
fa fOdt —hYY_y o) < Cye
so the approximate integral based on Sinc functionis

b . N fxp)
[0 f@dt =~ hE)y 75 @)

3. METHOD FOR GENERALIZED N DIMENSION INTEGRALS

Consider the multiple integral with variable and constant limits of the type

b a(sq)
STz fyey fsivs)dsdsy (28)

with s; = s5,55,....... , S

Applying the above proposed methods of weights (w;) and the corresponding nodes (x;) inthe above equationto

the inner integrals and by treating the outer integral variable s; as constant, the above equation can be written as

PO, [550 fsspdsidsy = [2 Ty Sy wi(s)f (4, 5i-1)dsy

c(si)
let us consider
9(s1) = [1i=2 XjZ1 wi(s)f (%5, Si-1)
again applying the above proposed methods of weights (w;) and the corresponding nodes (x;) in the above
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equation to the outer integral leads to

b acs; b m
ST, 5 flsusdsids, = [ g(si)dsy ~ Tty wig (%) (29)

c

The domain of integration for the above methods is conventionally taken as [0, 1) except Gauss Legendre
guadrature method and this method is taken as[-1, 1]. Sum of weightsis arange of domain, n be the number of dimensions

and m be the number of points. In this approach, the same number of pointsis considering to each integrals.
4. NUMERICAL EXAMPLES

The following examples are given to show the accuracy and efficiency of numerical integration by using Haar
wavelet, Block-pulse function, Chebyshev wavelet and Since function are compared with Gauss Legendre quadrature
method and exact solution. The absolute and relative error has been calculated and compared to each method for the given
examples are shown in the below tables and to illustrate the computation performance of multiple integralsin Figure 1 to 6

obtained with above method.

Definition 4.1 Suppose that x;, and x, denote the true and approximate values of a integrals then the error

incurred on approximating x; by x, isgiven by
e =X — X,
i.e. magnitude of the absolute error e, isgiven by
€a = |X¢ = X4l (30)
Definition 4.2 Relative Error or normalized error e, inrepresenting atruevalue x; by an approximate value x,
is defined by

e, = Xtal (31)

x|

4.1. Examples for Single Integration

Example 1

G

0

Vxcos? (x%)dx

The solution of the integral is 4.531824108052927 Using egn. (30). we calculated the absolute error, where x, is
the approximate value of the integral with the above method and compared with Gauss Legendre quadrature and exact
solution are shown in Table 1. and using egn. (31). we calculated the relative error and shown in Table 2. From the table as

considering NN be the number of nodes. An illustrate the computation performance of integration in Figure 1. obtained with
above method.

Impact Factor (JCC): 4.1675 NAAS Rating 3.45



The Numerical Solutionsof Multiple I ntegrals Based on Haar Wavelet,
Block-Pulse Function, Chebyshev Wavelet and Sinc Function

CPU time in sec
=]
2y

T

=)
o
T

0.7

0.4

50 100 1

50 200

250 300

Number of nodes

350

400 450 500

Figure 1: Time Evolution of Given Methods for Exampe 1

Table 1: The Absolute Error for Example 1

Haar Wavelet BPF Chebyshev Wavelet Sinc Function Gauss Leg. Quad.
(J,NN) e, (m,NN) e, (k,M,NN) e, (N,NN) e, (n,NN) e,

2,8 | 40009E-01 | 10,10 | 1.8978E-01 | 3,28 |4.0009E-01| 4,9 |84416E-01| 44 6.4792E-03
4,32 | 1.4264E-02 | 30,30 | 1.6140E-02 | 44,32 |1.0206E-02| 30,61 |3.4974E-03| 15,15 | 3.4578E-04
6,128 | 1.1426E-03 | 120,120 | 1.2803E-03 | 6,4,128 |2.6268E-04 | 64,129 | 9.4197E-05| 30,30 | 4.7708E-05
8,512 | 1.0585E-04 | 500,500 | 1.1013E-04 | 8,4,512 | 3.5822E-05 | 256,513 | 8.8818E-16 | 512,512 | 9.9912E-09

Table 2: The Relative Error for Example 1
Haar Wavelet BPF Chebyshev Wavelet Sinc Function Gauss Leg. Quad.
(J,NN) e, (m,NN) e, (k,M,NN) e, (N,NN) e, (n,NN) e,

2,8 | 8.8286E-02 | 10,10 | 4.1877E-02 | 32,8 |8.8286E-02| 4,9 |1.8627E-01| 4,4 |1.4297E-03
4,32 | 3.1475E-03 | 30,30 | 3.5614E-03 | 4,4,32 |2.2521E-03| 30,61 |7.7175E-04| 15,15 |7.6300E-05
6,128 | 2.5212E-04 | 120,120 |12.8251E-04| 6,4,128 |5.7963E-05| 64,129 | 2.0786E-05| 30,30 |1.0527E-05
8,612 | 2.3356E-05 | 500,500 | 2.4302E-05 | 8,4,512 | 7.9046E-06 | 256,513 | 1.9599E-16 | 512,512 | 2.2047E-09

Example 2
ﬂ 1 5in2008x dx

2

(2007%+1) (sin2008x+c0s2008y)

The exact solution is % ~ 0.7853981633974483. Using egn. (30). we calculated the absolute error, where x, is

the approximate value of the integral with the above method and compared with Gauss Legendre quadrature and exact

solution are shown in Table 3. and using egn. (31). we calculated the relative error and shown in Table 4. From the table as

considering NN be the number of nodes. An illustrate the computation performance of integration in Figure 2. obtained with

above method.
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Table 3: The Absolute Error for Example 2
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Haar Wavelet BPF Chebyshev Wavelet Sinc funCtion Gauss Leg. Quad.
(J,NN) e, (m,NN) e (k,M,NN) e (N,NN) e (n,NN) e,
2,8 | 0.0000E+00 | 10,10 |2.4758E-14| 3,28 |0.0000E+00| 4,9 |1.6641E-01| 44 2.3899E-01
4,32 | 0.0000E+00 | 30,30 |8.2157E-15| 44,32 | 1.1102E-16 | 30,61 |1.4478E-01| 1515 | 2.2177E-02
6,128 | 0.0000E+00 |120,120| 2.2204E-16| 6,4,128 | 0.0000E+00 | 64,129 | 6.8996E-02| 30,30 | 1.1467E-02
8,512 | 3.3307E-16 |500,500| 2.2204E-16 | 8,4,512 | 2.2204E-16 |256,513| 1.0589E-02 | 512,512 | 2.9933E-03
Table 4: The Relative Error for Example 2.!
Haar Wavelet BPF Chebyshev Wavelet Sinc Function Gauss Leg. Quad.
(J,NN) e, (m,NN) e, (k,M,NN) e, (N,NN) e, (n,NN) e,
2,8 |0.0000E+00| 10,10 |3.1523E-14| 3,2,8 |0.0000E+00| 4,9 12.1188E-01 4,4 | 3.0429E-01
4,32 | 0.0000E+00| 30,30 |1.0460E-14| 4,432 |1.4136E-16| 30,61 1.8434E-01 15,15 |2.8237E-02
6,128 | 0.0000E+00|120,120| 2.8272E-16| 6,4,128 |0.0000E+00| 64,129 | 8.7848E-02 30,30 | 1.4601E-02
8,512 | 4.2407E-16 |500,500| 2.8272E-16| 8,4,512 | 2.8272E-16 | 256,513 | 1.3482E-02 |512,512 | 3.8112E-03

4.2. Examples for Double Integration

Example 3

Iy §

1
1-xy

dxdy

The exact solution is }%_, % ~ 1.644934066848226. Using eqn. (30). we calculated the absolute error, where

x, isthe approximate value of the integral with the above method and compared with Gauss L egendre quadrature and exact

solution are shown in Table 5. and using egn. (31). we calculated the relative error and shown in Table 6. From the table as

considering NN be the number of nodes. An illustrate the computation performance of integration in Figure 3. obtained with
above method.
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Table 5: The Absolute Error for Example 3
Haar Wavelet BPF Chebyshev Wavelet Sinc Function Gauss Leg. Quad.
(J,NN) (N (m,NN) e, (k,M,NN) e, (N,NN) e, (n,NN) e,
2,8 | 5.7222E-02 | 10,10 |4.6446E-02| 3,28 |57222E-02| 49 |1.2976E-02| 44 3.8940E-02
4,32 | 1.5186E-02 | 30,30 |1.6173E-02| 4,432 |1.1349E-02| 30,61 |9.3798E-07| 15,15 | 3.3315E-03
6,128 | 3.8718E-03 |120,120| 4.1279E-03 | 6,4,128 | 2.8602E-03 | 64,129 | 5.2915E-10| 30,30 | 8.6129E-04
8,512 | 9.7397E-04 |500,500| 9.9729E-04 | 8,4,512 | 7.1653E-04 |125,251| 3.6193E-14 | 512,512 | 3.1996E-06
Table 6: The Relative Error for Example 3
Haar Wavelet BPF Chebyshev Wavelet Sinc Function Gauss Leg. Quad.
(J,NN) e, (m,NN) e, (k,M,NN) e, (N,NN) e, (n,NN) e,
2,8 | 3.4787E-02 | 10,10 |2.8236E-02| 3,28 |3.4787E-02| 4,9 |7.8883E-03| 4,4 2.3673E-02
4,32 | 9.2320E-03 | 30,30 |9.8321E-03| 4,4,32 |6.8992E-03| 30,61 |5.7022E-07| 15,15 | 2.0253E-03
6,128 | 2.3538E-03 |120,120| 2.5094E-03 | 6,4,128 | 1.7388E-03 | 64,129 | 3.2169E-10| 30,30 | 5.2360E-04
8,512 | 5.9210E-04 | 500,500 6.0628E-04 | 8,4,512 | 4.3560E-04 |125,251| 2.2003E-14 | 512,512 | 1.9451E-06
Example 4
2 4 x3 dxd
fo fxz Nrzrer xay

The exact solution is 4(v2 — 1) ~ 1.656854249492381. Using egn. (30). we calculated the absolute error,
where x, isthe approximate value of theintegral with the above method and compared with Gauss L egendre quadrature and
exact solution are shownin Table 7. and using eqn. (31). we cal culated therelative error and shown in Table 8. From the table

as considering NN be the number of nodes. An illustrate the computation performance of integration in Figure 4. obtained

with above method.

Table 7: The Absolute Error for Example 4

Haar Wavelet BPF Chebyshev Wavelet Sinc Function Gauss Leg. Quad.
(J,NN) e, (m,NN) eq (k,M,NN) e, (N,NN) e, (n,NN) eq
2,8 | 9.6835E-03 | 10,10 |5.9816E-03| 3,28 |9.6835E-03| 3,7 |84328E-03| 4,4 | 7.8592E-04
3,16 | 2.1421E-03 | 16,16 |2.1421E-03| 3,312 |6.4107E-04| 4,9 |9.7525E-04| 8,8 | 1.4282E-04
4,32 | 45917E-04 | 32,32 | 4.5917E-04| 34,16 |4.7310E-04| 6,13 |4.3953E-04 | 12,12 | 2.9766E-05
5,64 | 9.5168E-05 | 64,64 |9.5168E-05| 4,4,32 |1.4638E-04| 7,15 |3.3811E-04| 16,16 | 9.4974E-06
www.iaset.us editor @ aset.us
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Table 8: The Relative Error for Example 4
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Haar Wavelet BPF Chebyshev Wavelet Sinc Function Gauss Leg. Quad.
(J,NN) e, (m,NN) e, (k,M,NN) e, (N,NN) e, (n,NN) e,

2,8 | 5.8445E-03 | 10,10 | 3.6102E-03 3,2,8 5.8445E-03 3,7 5.0896E-03 | 4,4 |4.7435E-04
3,16 | 1.2929E-03 | 16,16 | 1.2929E-03 | 3,3,12 | 3.8692E-04 4,9 5.8861E-04 | 8,8 |8.6197E-05
4,32 | 27713E-04 | 32,32 | 2.7713E-04 | 3,416 | 2.8554E-04 | 6,13 | 2.6528E-04 | 12,12 | 1.7965E-05
5,64 | 5.7439E-05 | 64,64 | 5.7439E-05 | 4,432 | 8.8347E-05| 7,15 | 2.0407E-04 | 16,16 | 5.7322E-06

4.3. Examples for Triple Integration

Example 5

I Iy Jo

1

1-x

The exact solution is Y5—4

7 dxdydz

1
n3

~ 1.202056903159594. Using eqgn. (30). we calculated the absolute error, where

x, isthe approximate value of the integral with the above method and compared with Gauss L egendre quadrature and exact

solution are shown in Table 9. and using egn. (31). we calculated the relative error and shown in Table 10. From the table as

considering NN be the number of nodes. An illustrate the computation performance of integration in Figure 5. obtained

with above method.

Table 9: The Absolute Error for Example 5

Haar Wavelet

BPF Chebyshev Wavele| Sinc Function

Gauss Leg. Quad.

(J,NN)

e, (m,NN) e, (k,M,NN) e, (N,NN) e, (n,NN)

€q

2,8 14.06

77E-03 10,10 [2.8589E-03 3,2,8 W4.0677E-03 3,7 |1.0096E-02 8,8

8.8419E-05

3,16 [1.33

19E-03 16,16 [1.3319E-03 3,4,16 4.5409E-04 7,15 |1.0068E-03 16,16

6.3044E-06

4,32

4.1445E-04

32,32 4.1445E-04 4,4,32 [1.1999E-04 16,33 |1.8211E-05 32,32

4.2024E-07

564 1.24

35E-04 64,64 [1.2435E-04 4,8,64 4.0084E-06 32,65 [1.1358E-07| 64,64

2.7112E-08

Table 10: The Relative Error for Example 5

Haar Wavelet

BPF Chebyshev Wavele| Sinc Function

Gauss Leg. Quad.

(J,NN)

e, (m,NN) e, (k,M,NN) e, (N,NN) e, (n,NN)

er

2,8 [3.38

39E-03 10,10 [2.3783E-03 3,2,8 [3.3839E-03 3,7 [8.3988E-03 8,8

7.3556E-05

3,16 [1.10

81E-03 16,16 [1.1081E-03 3,4,16 [3.77/76E-04 7,15 [8.3758E-04 16,16

5.2447E-06

4,32 [3.44

79E-04 32,32 [3.4479E-04 4,4,32 [9.9824E-05 16,33 [1.5150E-05 32,32

3.4960E-07

5,64 [1.03

45E-04 64,64 [1.0345E-04 4,8,64 [3.3346E-06 32,65 [9.4487E-08 64,64

2.2555E-08
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The Numerical Solution:

sof Multiple I ntegrals Based on Haar Wavelet,

Block-Pulse Function, Chebyshev Wavelet and Sinc Function

Example 6
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Figure 5: Time Evolution of Given Methods for Exampe 5
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Theexact solutionis 167” ~ 10.053096491487338. Using egn. (30). we cal culated the absolute error, where x, is

the approximate value of the integral with the above method and compared with Gauss Legendre quadrature and exact
solution are shown in Table 11. and using eqgn. (31). we calculated the relative error and shown in Table 12. Fromthetable as

considering NN be the number of nodes. An illustrate the computation performance of integration in Figure 6. obtained with

above method.
——H let T
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Figure 6: Time Evolution of Given Methods for Examge 6
Table 11: The Absolute Error for Example 6
Haar Wavelet BPF Chebyshev Wavele| Sinc Function |Gauss Leg. Quad.
(J,NN) e, (m,NN) e, (k,M,NN) e, (N,NN) e, (n,NN) e,
2,8 9.7155E-02 10,10 |6.8570E-02 3,2,8 [9.7155E-02 2,5 |5.7273E-02 8,8 [5.1733E-03
3,16 [3.2971E-02 16,16 [3.2971E-02 3,4,16 [1.5726E-02 3,7 4.1350E-02 16,16 6.9555E-04
4,32 [1.1262E-02 32,32 [1.1262E-02] 4,4,32 [5.4036E-03 7,15 |6.0570E-03 32,32 [9.0621E-05
5,64 [3.8747E-03 64,64 [3.8747E-03 4,8,64 [7.7776E-04 32,65 |6.5828E-07 64,64 |1.1580E-05
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Table 12: The Relative Error for Example 6

Haar Wavelet BPF Chebyshev Wavele| Sinc Function |Gauss Leg. Quad.
(J,NN) e, (m,NN) e, (k,M,NN) e, (N,NN) e, (n,NN) e,
2,8 [9.6642E-0310,10 |6.8208E-033,2,8 9.6642E-032,5 |5.6971E-038,8 |5.1459E-04
3,16 [3.2797E-0316,16 [3.2797E-033,4,16 [1.5643E-033,7 |4.1131E-0316,16 |6.9188E-05
4,32 [1.1203E-0332,32 [1.1203E-034,4,32 |5.3750E-047,15 |6.0250E-0432,32 [9.0143E-06
5,64 |3.8543E-04/64,64 [3.8543E-044,8,64 |7.7366E-0532,65 |6.5481E-0864,64 [1.1519E-06

5. RESULTS AND DISCUSSIONS

Maximum absolute and relative errors obtained by the numerical multiple integrations based on the given methods
for certain problems are shown in Tables 1 to 12. Comparison of maximum absolute and relative errors with Gaussian
Legendre quadrature method and exact solution determines the accuracy of given methods. Estimates the computation
performance for the certain problemsis shownin figure 1 to 6. Comparison of time evolutions with Gaussian Legendre
guadrature method. It is clearly seen that numerical multiple integrations using above methods have produced improved
results ,as well as computation performance, are compared with Gaussian Legendre quadrature method for numerical

multiple integrations.

6. CONCLUSIONS

In this paper, Haar wavelet, Block-pulse function, Chebyshev wavelet and Sinc functions were applied for
numerical multipleintegrations (double, triple integrals) with variable and constant limits. Compared between these methods
with Gaussian Legendre quadrature method. The exact solution clearly shows that the above methods and given a much
better (anyone of Haar wavelet, Block-pulse function, Chebyshev wavelet and Sinc functions and it depends on the problem)

results as well as computation performance than Gaussian Legendre quadrature method.
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